Relationships and

 Functions- Algebra, Lesson 1.1 -

How we elect our president: The Electoral College

How we elect our president: The Electoral College

Popular Vote

Electoral College

Electoral College

Today's Key Analysis
 Are electoral votes a function of people's votes?

Algebra, Lesson 1.1 Guided Notes

Handout: skewthescript.org/algebra/1-1

Topics
 1. Functions as Maps 2. Non-Functions

Topics
 1. Functions as Maps
 2. Non-Functions

Skew The
Script
skewthescript.org

Different kind of map:

Y
-2
-1
0
1
2
3
-4
-2
0
2
4
6

Different kind of map:

Y
-2
-1
0
1
2
3
-4
-2
0
2
4
6

Skew The
Script

Different kind of map:

Skew The

Different kind of map:

Skew The

Different kind of map:

Different kind of map:

This map is a function, because each X is connected to exactly one Y

X

Even this jumbled map is a function, because each X is connected to exactly one Y

Skew The

Is this a function?

This map is not a function, because $X=-3$ is connected $Y=2$ and $Y=-7$

This is a good map.

Each name is connected to exactly one place. It's clear where 'Maine' is!

This is a bad map.

 What would you do if you were told to go to Connecticut?

This is a bad map.
What would you do if you were told to go to Connecticut?

If you were given that $X=-3$, you wouldn't know which Y to go to!

$X \quad Y$

Topics

1. Functions as Maps
 2. Non-Functions

Are these functions?

1.

2.

3.

Are these functions?

1.

Yes
2.

No
3.

Yes
Skew The
Script

Are these functions?

1.

Yes
2.

No
3.

Yes
Skew The
Script

Are these functions?

Are these functions?

Are these functions?

Are these functions?

At this x-value (-4), there are two possible y-values! It's a confusing map.

Skew The Script

Are these functions?

This is called the vertical line test. It shows you if one x-value maps to multiple y-values.

At this x-value (-4), there are two possible y-values! It's a confusing map.

Last review:

Function!

Extreme examples:
 $X \quad Y$

Extreme examples:

Function!

$X \quad Y$

Skew The Script

Not a function

Key Example:
 The Electoral College

- In the Presidential Election, candidates win electoral votes for winning states
- If a candidate gets 270 electoral votes, they win!

State's number is equal to...

- It's number of Senators (2 per state)
- Plus it's number of House Members (depends on size of state)

More populous states

 (California, Texas, etc.) have more electoral votes.State's number is equal to...

- It's number of Senators (2 per state)
- Plus it's number of House Members (depends on size of state)

Low-population states get at least 3 electoral votes (2 senators + 1 House Member).

State's number is equal to...

- It's number of Senators (2 per state)
- Plus it's number of House Members (depends on size of state)

Question: is the number of electoral votes a function of people's votes?

Electoral vs. People’s votes

	Voter Share		Electoral Votes
Trump 2016	46%	304	Won

Electoral vs. People's votes

Candidate	Voter Share		Electoral Votes
Trump 2016	46%	304	Won
Clinton 2016	48%	227	LoSt

Electoral vs. People’s votes

Candidate	Voter Share	Electoral Votes	
Trump 2016	46%	304	Won
Clinton 2016	48%	227	LOSt
McCain 2008	46%	173	LOSt

Electoral vs. People’s votes

Candidate	Voter Share	Electoral Votes	
Trump 2016	46%	304	Won
Clinton 2016	48%	227	LOSt
McCain 2008	46%	173	LOSt

Electoral vs. People's votes

Electoral vs. People's votes

Candidate	Voter Share	
Electoral Votes		
Trump 2016	46%	304
Clinton 2016	48%	227
McCain 2008	46%	173

Electoral votes are not a function of people's votes. Candidates who won the same share of people's votes had very different outcomes.

Electoral vs. People's votes

	Voter Clandidate Share		
Eletoral	Votes		

Lesson 1.1
 Discussion

Skew The

Ohio

Note: The following examples will use hypothetical (but
Cal demonstrative) numbers

Ohio

California

10 million (R)

 7 million (D)Texas

14 million (D)
 Ohio
 184 million (D)

California

10 million (R)

Ohio

$\sqrt{ } \quad$ Ohio
California one small change

Ohio

 Republicans to Ohio, and Ohio sends 1 million Democrats to Texas
Imagine Texas sends 1 million

Ohio

18 Same as

California

9 million (R)
8 million (D)

California

9 million (R)

Ohio

Ohio

Bottom Line: Winning more votes

 matters less than winning moreTexas

McCain (2008): ${ }^{46 \%}$ of popular vote 173 electoral votes

Lost

304 electoral votes

Trump (2016):
 46\% of popular vote

Same vote share

Trump (2016):
 46\% of popular vote
 304 electoral votes

Trump (2016):
 46\% of popular vote

Same vote share

Electoral vs. People's votes

	Voter	Electoral Cotes
Trump 2016	46%	304
Clinton 2016	48%	227
McCain 2008	46%	173

Discussion Question:

Should electoral votes be a function of people's votes (voter share)? Justify your answer.

Lesson 1.1 Practice

Skew The
Script

Basketball Court

Basketball Court

Basketball

 Court

Basketball

Court

Question 1

Location from Rim Points

Basketball

Court

Basketball

Court

Distance
Location from Rim Points

Distance
Location from Rim Points

Distance
Location from Rim Points

